Ultra-fast Object Recognition from Few Spikes

نویسندگان

  • Chou Hung
  • Gabriel Kreiman
  • Tomaso Poggio
  • James J. DiCarlo
چکیده

Understanding the complex brain computations leading to object recognition requires quantitatively characterizing the information represented in inferior temporal cortex (IT), the highest stage of the primate visual stream. A read-out technique based on a trainable classifier is used to characterize the neural coding of selectivity and invariance at the population level. The activity of very small populations of independently recorded IT neurons (~100 randomly selected cells) over very short time intervals (as small as 12.5 ms) contains surprisingly accurate and robust information about both object ‘identity’ and ‘category’, which is furthermore highly invariant to object position and scale. Significantly, selectivity and invariance are present even for novel objects, indicating that these properties arise from the intrinsic circuitry and do not require object-specific learning. Within the limits of the technique, there is no detectable difference in the latency or temporal resolution of the IT information supporting so-called ‘categorization’ (a.k. basic level) and ‘identification’ (a.k. subordinate level) tasks. Furthermore, where information, in particular information about stimulus location and scale, can also be readout from the same small population of IT neurons. These results show how it is possible to decode invariant object information rapidly, accurately and robustly from a small population in IT and provide insights into the nature of the neural code for different kinds of object-related information. The authors, Chou Hung and Gabriel Kreiman, contributed equally to this work. Supplementary Material is available at http://ramonycajal.mit.edu/kreiman/resources/ultrafast/. _____________________________________________________________________________ This report describes research done at the Center for Biological & Computational Learning, which is in the McGovern Institute for Brain Research at MIT, as well as in the Dept. of Brain & Cognitive Sciences, and which is affiliated with the Computer Sciences & Artificial Intelligence Laboratory (CSAIL). This research was sponsored by a Whiteman Fellowship and the Government grant from the Office of Naval Research (DARPA) Contract No. MDA972-04-1-0037, Office of Naval Research (DARPA) Contract No. N00014-02-1-0915, National Science Foundation (ITR/SYS) Contract No. IIS-0112991, National Science Foundation (ITR) Contract No. IIS-0209289, National Science Foundation-NIH (CRCNS) Contract No. EIA-0218693, National Science Foundation-NIH (CRCNS) Contract No. EIA0218506, and National Institutes of Health (Conte) Contract No. 1 P20 MH66239-01A1. Additional support was provided by: Central Research Institute of Electric Power Industry (CRIEPI), Daimler-Chrysler AG, Compaq/Digital Equipment Corporation, Eastman Kodak Company, Honda R&D Co., Ltd., Industrial Technology Research Institute (ITRI), Komatsu Ltd., Eugene McDermott Foundation, Merrill-Lynch, NEC Fund, Oxygen, Siemens Corporate Research, Inc., Sony, Sumitomo Metal Industries, and Toyota Motor Corporation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

طراحی یک سیستم تشخیص اسکناس مبتنی بر شبکه عصبی با استفاده از مشخصه های بافت و رنگ تصویر

Since money exchange is important in our daily life, many types of equipments such as Vending Machines, Currency Sorters, Automatic Teller Machines (ATM) and Currency Recognition systems for blind people have been made. More advanced devices with more capabilities are being made each day. As a result, efficient, fast and reliable currency recognition methods are required. Most currency recognit...

متن کامل

Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes

Understanding the complex brain computations leading to object recognition requires quantitatively characterizing the information represented in inferior temporal cortex (IT), the highest stage of the primate visual stream. A read-out technique based on a trainable classifier is used to characterize the neural coding of selectivity and invariance at the population level. The activity of very sm...

متن کامل

Stability-indicating UFLC method for uncoupling and estimation of impurities in clopidogrel, aspirin and omeprazole in their tablet dosage form using PDA detection

In this paper a fast and novel stability-indicating ultra fast LC method for separation and estimation of impurities in clopidogrel and aspirin in their combined tablet dosage form and omeprazole was developed. The separation of USP related substances of clopidogrel (A, B and C), aspirin (D), omeprazole (A, B and C) and few other unknown impurities was detected by using ultra fast liquid chroma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005